Universidad Tecnológica Nacional Facultad Regional Bahía Blanca Ingeniería Mecánica. Mecánica Racional. Ejercicio de Mecánica Vectorial y Analítica


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Universidad Tecnológica Nacional Facultad Regional Bahía Blanca Ingeniería Mecánica. Mecánica Racional. Ejercicio de Mecánica Vectorial y Analítica"

Transcripción

1 Mecánica Racional Ejercicio de Mecánica Vectorial y Analítica Profesor Dr. Ercoli Liberto Alumno Breno Alejandro Año

2 Cinemática y cinética del cuerpo rígido: Universidad Tecnológica Nacional Ejercicio N 1 Mecánica Vectorial El soporte inclinado C gira con velocidad angular respecto al soporte fijo A y con respecto al soporte B. Sobre él gira el disco M con una velocidad angular. Ver figura 1. a. Figura 1.1. a) Representación gráfica del sistema y nomenclatura. b) Imagen del sistema. Datos: e: espesor del disco = 20 mm ; R: radio del disco = 75 mm ; M: masa del disco = 1000 g ; ; ; ; ; 2

3 El marco de referencia ofrecido por el vínculo A es absoluto, mientras que el representado por el sistema coordenado {G, X, Y, Z} es móvil y está animado de las rotaciones y. Calcular: 1. Invariantes y tipo de movimiento del disco M. 2. Velocidad de un punto D genérico de la periferia de M. 3. Aceleración angular del disco. 4. Aceleración del punto D. 5. Energía cinética de M. 6. Encontrar los valores de los incisos precedentes en el caso que. 7. Momento cinético en. 8. Momento dinámico en. Ayuda: Utilizar los conceptos cinemáticos del movimiento absoluto, tomando como centro de reducción. Desarrollo: 1. Invariante y tipo de movimiento Invariante vectorial Así se le llama al vector rotación, resultante de todas las rotaciones que afectan al sistema, debido a que no se ve afectado sea cual sea el punto de reducción elegido. Para este ejercicio, Expresándolo respecto a la terna móvil: ( ) ( ) Invariante escalar Se le denomina a la constante que surge de proyectar los vectores velocidad de un sistema material rígido sobre la dirección del vector rotación. 3

4 siendo la velocidad de cualquier punto del cuerpo. Tomaremos como centro de reducción al punto ninguna rotación le imprime velocidad. dado que conocemos a priori su velocidad ya que Ya que es: Dado que es una solución arbitraria, tomaremos para el cálculo también un punto con velocidad no nula, el punto D, por ejemplo. Luego queda demostrado que: Tipo de movimiento. Los invariantes vectorial y escalar definen el tipo de movimiento. Con el invariante escalar existen dos posibilidades: con movimiento de rotación con punto perteneciente al eje de rotación, el considerado para el cálculo, en este caso el. con movimiento de rotación instantánea. Luego, el movimiento resultante es una rotación pero con un solo punto fijo que es el lugar a una Rotación instantánea.. Esto da 4

5 Universidad Tecnológica Nacional Figura Velocidad de un punto D genérico de la periferia de M Sea el ángulo que forma respecto al eje para poder indicar la posición del punto genérico D. Ver figura 1.2. ( ) 3. Aceleración angular del disco. Se obtiene derivando el vector velocidad angular del disco respecto al tiempo. ( ) Debido a que el vector velocidad angular está referido a la terna móvil, es decir que las direcciones de los ejes coordenados de la terna son funciones del tiempo y deben ser derivadas, es que se recurre a unas expresiones llamadas fórmulas de Poisson. Estas permiten expresar a las derivadas de 5

6 Universidad Tecnológica Nacional los versores en función de un sencillo producto vectorial entre la velocidad angular impuesta a la terna móvil y el mismo versor. Luego tenemos: ( ) ( ) ( ) siendo la velocidad angular impuesta a la terna móvil {G, X, Y, Z}, es decir: Luego: ( ) ( ) 4. Aceleración del punto D. 5. Energía cinética de M. Para ello utilizamos la expresión: El primer sumando,, es la energía cinética de arrastre o traslación y es la que tendría el sistema en el supuesto de que toda la masa estuviera concentrada en el centro de reducción. El segundo sumando,, es la energía cinética relativa o de rotación y está originada por el movimiento relativo de cada punto respecto al del centro de reducción. 6

7 El tercer sumando,, es la energía cinética que depende del centro de reducción llamada fuerza viva compuesta. En este caso es nula debido a que tomamos como centro de reducción al baricentro, es decir: Luego: ( ) ( ) Momentos de inercia del disco M. ( ) El momento de inercia del disco respecto al eje se obtiene por: siendo los cosenos directores entre el eje y los ejes y respectivamente. En la figura se muestra el ángulo, el cual está comprendido entre el eje y el eje, en el plano YZ. ( ) ( ) ( ) ( ) Luego: 7

8 La energía cinética queda: 6. Incisos precedentes con y. Para ello se utiliza un nuevo sistema coordenado { } el cual gira con. Figura 1.3. Las velocidades angulares respecto a la terna móvil nueva son: Entonces, la velocidad angular con el sistema cambiado queda: Velocidad del punto D 8

9 Universidad Tecnológica Nacional Aceleración angular del disco. ( ) Luego se tiene que: ( ) ( ) Se recuerda que Luego: Aceleración del punto D. es la velocidad angular impuesta a la nueva terna móvil. Energía cinética de M. Volvemos a utilizar la expresión: Dado que: Luego: 9

10 Los momentos de inercia del disco M eran: ( ) El momento de inercia del disco respecto al eje se obtiene por: siendo los cosenos directores entre el eje y los ejes y respectivamente. En la figura se muestra el ángulo., el cual está comprendido entre el eje y el eje, en el plano ( ) ( ) ( ) ( ) Luego: La energía cinética queda: 10

11 Universidad Tecnológica Nacional 7. Momento cinético en. ( ) ( ) 8. Momento dinámico en. Para obtener el Momento dinámico o Momento de todas las fuerzas exteriores respecto del centro de momento, se parte de la ecuación de Euler, esta es: En el primer sumando, la derivada es cero dado que es respecto a la terna relativa. No sería nula si la terna no fuese móvil. En el término siguiente, se recuerda que la velocidad angular es la de la terna móvil, es decir, ya calculada en el inciso 3. En el tercer sumando, ya que el punto de reducción no tiene velocidad: vectorial también es nulo., el producto Luego queda que: ( ) 11

12 Ejercicio N 2 Mecánica Analítica Obtención de la ecuación rectora del movimiento del siguiente sistema. Ver figura 2. Desarrollo: Figura 2. Vista lateral del sistema y nomenclatura. Primero se eligen las coordenadas generalizadas. En este caso son: Como segundo paso se deben obtener las fuerzas generalizadas. Para ello utilizamos: 12

13 Universidad Tecnológica Nacional en donde es el vector posición en donde la fuerza se aplica; y es la velocidad angular del sistema con respecto al eje a lo largo del cual se aplica el momento. ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Ya calculadas ambas fuerzas generalizadas, proseguimos por determinar la energía cinética, la potencial y la función de disipación del sistema. [( ) ] ( ) [ ( ) ( ) ] [ ] ( ) ( ) ( ) 13

14 Universidad Tecnológica Nacional Aplicamos las Ecuaciones de Lagrange de movimiento: ( ) Calculamos: ( ) ( ) ( ) ( ) Por último, las ecuaciones rectoras del movimiento son: ( ) ( ) ( ) ( ) 14

15 Para Ambos ejercicios utilizamos Software Microsoft Word Solid Edge Academic V17 AutoCad 2009 Versión académica Libros de consulta Monografía de la cátedra, Mecánica Racional, Profesor Ing. Liberto Ercoli, 2006 Mecánica Vectorial para Ingenieros, Dinámica, Octava Edición, Ferdinand P. Beer E. Russell Johnston Jr. William E. Clausen, Mc. Graw Hill Análisis Dinámicos de los Sistemas Mecánicos, 2da Edición, Luciano Chiang S., Alfaomega Mecánica Analítica. Spagnolo Zubcov, Nueva Librería, Primera Edición 2002 Vibraciones, Balakumar Balachandran - Edward B. Magrab, Cengage Learning Editores S.A 15

6 DINAMICA DEL CUERPO RIGIDO

6 DINAMICA DEL CUERPO RIGIDO 6 DINAMICA DEL CUERPO RIGIDO 6. CINEMATICA 6.. Configuracion de un Cuerpo Rígido: Angulos de Euler Un cuerpo rígido se puede entender como una distribución continua de materia que se subdivide en pequeños

Más detalles

Cinética. 1. Introducción Cantidad de movimiento Teorema del centro de masas... 2

Cinética. 1. Introducción Cantidad de movimiento Teorema del centro de masas... 2 Índice Cinética 1. Introducción. Cantidad de movimiento.1. Teorema del centro de masas................................ 3. Momento cinético 3 3.1. Teorema de König relativo al momento cinético.....................

Más detalles

5 CINEMATICA DEL CUERPO RIGIDO EN MOVIMIENTO PLANO. Dr A A C. y(o ) x(o ) 5.1 INTRODUCCION

5 CINEMATICA DEL CUERPO RIGIDO EN MOVIMIENTO PLANO. Dr A A C. y(o ) x(o ) 5.1 INTRODUCCION 5 CINEMTIC DEL CUERPO RIGIDO EN MOVIMIENTO PLNO 5.1 INTRODUCCION Cuerpo Rígido Sistema dinámico que no presenta deformaciones entre sus partes ante la acción de fuerzas. Matemáticamente, se define como

Más detalles

Javier Junquera. Movimiento de rotación

Javier Junquera. Movimiento de rotación Javier Junquera Movimiento de rotación Bibliografía Física, Volumen 1, 3 edición Raymod A. Serway y John W. Jewett, Jr. Ed. Thomson ISBN: 84-9732-168-5 Capítulo 10 Física, Volumen 1 R. P. Feynman, R. B.

Más detalles

Introducción. Cuerpo Rígido. Mecánica Racional 20 TEMA 4: Cinemática de los Cuerpos Rígidos.

Introducción. Cuerpo Rígido. Mecánica Racional 20 TEMA 4: Cinemática de los Cuerpos Rígidos. Introducción. La cinemática de cuerpos rígidos estudia las relaciones existentes entre el tiempo, las posiciones, las velocidades y las aceleraciones de las diferentes partículas que forman un cuerpo rígido.

Más detalles

Momento angular o cinético

Momento angular o cinético Momento angular o cinético Definición de momento angular o cinético Consideremos una partícula de masa m, con un vector de posición r y que se mueve con una cantidad de movimiento p = mv z L p O r y x

Más detalles

CONTENIDO SÓLIDO RÍGIDO I. CINEMÁTICA. Definición de sólido rígido. Cálculo de la posición del centro de masas. Movimiento de rotación y de traslación

CONTENIDO SÓLIDO RÍGIDO I. CINEMÁTICA. Definición de sólido rígido. Cálculo de la posición del centro de masas. Movimiento de rotación y de traslación CONTENIDO Definición de sólido rígido Cálculo de la posición del centro de masas Movimiento de rotación y de traslación Movimiento del sólido rígido en el plano Momento de inercia Teorema de Steiner Tema

Más detalles

Mecánica de Fluidos. Análisis Diferencial

Mecánica de Fluidos. Análisis Diferencial Mecánica de Fluidos Análisis Diferencial Análisis Diferencial: Descripción y caracterización del flujo en función de la descripción de una partícula genérica del flujo. 1. Introducción 2. Movimiento de

Más detalles

1RA PRÁCTICA CALIFICADA (CINEMÁTICA DE UNA PARTÍCULA Y CUERPO RÍGIDO)

1RA PRÁCTICA CALIFICADA (CINEMÁTICA DE UNA PARTÍCULA Y CUERPO RÍGIDO) 1RA PRÁCTICA CALIFICADA (CINEMÁTICA DE UNA PARTÍCULA Y CUERPO RÍGIDO) DINÁMICA (IC 244) ALUMNOS : CARITAS BARRIENTOS, Ronald ROBLES ROCHA, Hamilton TORRES PÉREZ, Walter A. TORO VELARDE, William DOCENTE

Más detalles

Dinámica. Carrera: EMM Participantes Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos.

Dinámica. Carrera: EMM Participantes Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Dinámica Ingeniería Electromecánica EMM - 0511 3 2 8 2.- HISTORIA DEL PROGRAMA

Más detalles

Dinámica. Carrera: MTM Participantes Representante de las academias de ingeniería Mecatrónica de los Institutos Tecnológicos.

Dinámica. Carrera: MTM Participantes Representante de las academias de ingeniería Mecatrónica de los Institutos Tecnológicos. .- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos: Dinámica Ingeniería Mecatrónica MTM-0 --.- HISTORIA DEL PROGRAMA Lugar y fecha

Más detalles

Centro de gravedad de un cuerpo bidimensional

Centro de gravedad de un cuerpo bidimensional Centro de gravedad de un cuerpo bidimensional Al sumar las fuerzas en la dirección z vertical y los momentos alrededor de los ejes horizontales y y x, Aumentando el número de elementos en que está dividida

Más detalles

TÉCNICO SUPERIOR UNIVERSITARIO EN ENERGÍAS RENOVABLES ÁREA ENERGÍA SOLAR EN COMPETENCIAS PROFESIONALES ASIGNATURA DE FÍSICA

TÉCNICO SUPERIOR UNIVERSITARIO EN ENERGÍAS RENOVABLES ÁREA ENERGÍA SOLAR EN COMPETENCIAS PROFESIONALES ASIGNATURA DE FÍSICA TÉCNICO SUPERIOR UNIVERSITARIO EN ENERGÍAS RENOVABLES ÁREA ENERGÍA SOLAR EN COMPETENCIAS PROFESIONALES ASIGNATURA DE FÍSICA 1. Competencias Plantear y solucionar problemas con base en los principios y

Más detalles

Magnitudes y Unidades. Cálculo Vectorial.

Magnitudes y Unidades. Cálculo Vectorial. Magnitudes y Unidades. Cálculo Vectorial. 1. Se tiene las expresiones siguientes, x es posición en el eje X, en m, v la velocidad en m/s y t el tiempo transcurrido, en s. Cuáles son las dimensiones y unidades

Más detalles

2 o Bachillerato. Conceptos básicos

2 o Bachillerato. Conceptos básicos Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos

Más detalles

Javier Junquera. Equilibrio estático

Javier Junquera. Equilibrio estático Javier Junquera Equilibrio estático Bibliografía Física, Volumen 1, 6 edición Raymod A. Serway y John W. Jewett, Jr. Ed. Thomson ISBN: 84-9732-168-5 Capítulo 12 Definición de equilibrio El término equilibrio

Más detalles

PRINCIPIOS DE LA DINÁMICA

PRINCIPIOS DE LA DINÁMICA Capítulo 3 PRINCIPIOS DE LA DINÁMICA CLÁSICA 3.1 Introducción En el desarrollo de este tema, cuyo objeto de estudio son los principios de la dinámica, comenzaremos describiendo las causas del movimiento

Más detalles

PROGRAMA DE ASIGNATURA CLAVE: 1213 SEMESTRE: 2º ESTÁTICA. HORAS SEMESTRE CARACTER GEOMETRÍA ANALÍTICA.

PROGRAMA DE ASIGNATURA CLAVE: 1213 SEMESTRE: 2º ESTÁTICA. HORAS SEMESTRE CARACTER GEOMETRÍA ANALÍTICA. UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES ACATLÁN DIVISIÓN DE MATEMÁTICAS E INGENIERÍA LICENCIATURA EN INGENIERÍA CIVIL ACATLÁN PROGRAMA DE ASIGNATURA CLAVE: 1213 SEMESTRE:

Más detalles

INDICE 1. Desigualdades 2. Relaciones, Funciones, Graficas 3. La Línea Recta 4. Introducción al Cálculo. Límites

INDICE 1. Desigualdades 2. Relaciones, Funciones, Graficas 3. La Línea Recta 4. Introducción al Cálculo. Límites INDICE 1. Desigualdades 1 1. Desigualdades 1 2. Valor absoluto 8 3. Valor absoluto y desigualdades 11 2. Relaciones, Funciones, Graficas 16 1. Conjunto. Notación de conjuntos 16 2. El plano coordenado.

Más detalles

Examen de TEORIA DE MAQUINAS Junio 07 Nombre...

Examen de TEORIA DE MAQUINAS Junio 07 Nombre... Examen de TEORIA DE MAQUINAS Junio 07 Nombre... La figura muestra un mecanismo biela-manivela. La manivela posee masa m y longitud L, la biela masa 3 m y longitud 3 L, y el bloque masa 2m. En la posición

Más detalles

PROGRAMA ANALÍTICO. Mg. Ing. Luis A. Lifschitz Profesor Titular Ing. Javier A. Puiatti Ayudante de Primera

PROGRAMA ANALÍTICO. Mg. Ing. Luis A. Lifschitz Profesor Titular Ing. Javier A. Puiatti Ayudante de Primera PROGRAMA ANALÍTICO DEPARTAMENTO: CIENCIAS BÁSICAS CARRERA: INGENIERÍA MECÁNICA ASIGNATURA: MECÁNICA TEÓRICA CÓDIGO: 0326 AÑO ACADÉMICO: 2014 PLAN DE ESTUDIO: 2005 UBICACIÓN EN EL PLAN DE ESTUDIO: 1ER.

Más detalles

PROGRAMA DE CURSO DE INGRESO - ASIGNATURA FISICA

PROGRAMA DE CURSO DE INGRESO - ASIGNATURA FISICA PROGRAMA DE CURSO DE INGRESO - ASIGNATURA FISICA Unidades Programáticas 1. Magnitudes Físicas 2. Vectores 3. Cinemática Escalar 4. Dinámica 5. Mecánica de Fluidos 6. Termometría y Calorimetría. Desarrollo

Más detalles

Dinámica de los sistemas de partículas

Dinámica de los sistemas de partículas Dinámica de los sistemas de partículas Definiciones básicas Supongamos un sistema compuesto por partículas. Para cada una de ellas podemos definir Masa Posición Velocidad Aceleración Fuerza externa Fuerza

Más detalles

GUÍA DOCENTE Mecánica Aplicada

GUÍA DOCENTE Mecánica Aplicada GUÍA DOCENTE 2016-2017 Mecánica Aplicada 1. Denominación de la asignatura: Mecánica Aplicada Titulación Grado en Ingenieria de Tecnologías de Caminos Código 6493 2. Materia o módulo a la que pertenece

Más detalles

I. Objetivos. II. Introducción.

I. Objetivos. II. Introducción. Universidad de Sonora División de Ciencias Exactas y Naturales Departamento de Física Laboratorio de Mecánica II Práctica #: Dinámica rotacional: Cálculo del Momento de Inercia I. Objetivos. Medir el momento

Más detalles

Práctico 2: Mecánica lagrangeana

Práctico 2: Mecánica lagrangeana Mecánica Anaĺıtica Curso 2016 Práctico 2: Mecánica lagrangeana 1. La polea y la cuerda de la figura son ideales y los bloques deslizan sin roce. Obtenga las aceleraciones de los bloques a partir de las

Más detalles

Pontificia Universidad Católica del Ecuador

Pontificia Universidad Católica del Ecuador Av. 12 de Octubre 76 y Roca 1.- DATOS INFORMATIVOS: MATERIA O MÓDULO: Física I CÓDIGO: CARRERA: NIVEL: Civil Primero P1 No. CRÉDITOS: 6 CRÉDITOS TEORÍA: 6 CRÉDITOS PRÁCTICA: 2 SEMESTRE / AÑO ACADÉMICO:

Más detalles

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CINEMÁTICA CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CONCEPTO DE MOVIMIENTO: el movimiento es el cambio de posición, de un cuerpo, con el tiempo (este

Más detalles

2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera Soluciones del boletín de problemas 6

2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera Soluciones del boletín de problemas 6 2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera 2003 Soluciones del boletín de problemas 6 Problema 1. Varilla deslizándose por una pared. Dado que los extremos de la varilla están forzados a permanecer

Más detalles

Facultad de Ciencias Exactas y Tecnología Universidad Autónoma Gabriel René Moreno CARRERA DE INGENIERIA INDUSTRIAL

Facultad de Ciencias Exactas y Tecnología Universidad Autónoma Gabriel René Moreno CARRERA DE INGENIERIA INDUSTRIAL DATOS GENERALES PROGRAMA ANALITICO DE LA ASIGNATURA FISICA I (FIS- 100) ASIGNATURA:. Física I SIGLA Y CODIGO:... FIS 100 CURSO:.. Primer Semestre PREREQUISITOS: Ninguno HORAS SEMANAS:... 4 Teóricas y 4

Más detalles

Estatica. Carrera: Participantes Academia de Ing. Civil del ITN. Asignaturas Temas Asignaturas Temas Resistencia de Materiales.

Estatica. Carrera: Participantes Academia de Ing. Civil del ITN. Asignaturas Temas Asignaturas Temas Resistencia de Materiales. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Estatica Ingeniería Civil Clave de la asignatura: Horas teoría-horas práctica-créditos 3 2 8 2.- HISTORIA DEL PROGRAMA Lugar y fecha de elaboración

Más detalles

UNIVERSIDAD DE COSTA RICA ESCUELA DE INGENIERIA CIVIL FACULTAD DE INGENIERIA Teléfonos: y Telefax:

UNIVERSIDAD DE COSTA RICA ESCUELA DE INGENIERIA CIVIL FACULTAD DE INGENIERIA Teléfonos: y Telefax: Teléfonos: 0 y 08 Telefax: 8 Programa del curso IC 00 Mecánica II (Dinámica) I Ciclo Lectivo de 0 Profesor: Stefan Salazar Burger Grupo: 0 Aula: IN Horario: L J: 0:00 a :0 y 8:00 a 8:0 a.m. Créditos: Requisitos:

Más detalles

Resolución de problemas aplicando leyes de Newton y consideraciones energéticas

Resolución de problemas aplicando leyes de Newton y consideraciones energéticas UIVERSIDAD TECOLÓGICA ACIOAL Facultad Regional Rosario UDB Física Cátedra FÍSICA I Resolución de problemas aplicando lees de ewton consideraciones energéticas 1º) Aplicando lees de ewton (Dinámica) Pasos

Más detalles

Práctica de cuerpo rígido

Práctica de cuerpo rígido Cátedra de Física 1 (6.01) Práctica de cuerpo rígido Objetivos... Pre - requisitos para realizar la práctica... Bibliografía recomendada en referencia la modelo teórico... Competencias que el alumno puede

Más detalles

VELOCIDAD Y ACELERACION. RECTA TANGENTE.

VELOCIDAD Y ACELERACION. RECTA TANGENTE. VELOCIDAD Y ACELERACION. RECTA TANGENTE. 3. Describir la trayectoria y determinar la velocidad y aceleración del movimiento descrito por las curvas siguientes: (a) r (t) = i 4t 2 j + 3t 2 k. (b) r (t)

Más detalles

Física I. Carrera: SCM Participantes. Representantes de la academia de sistemas y computación de los Institutos Tecnológicos.

Física I. Carrera: SCM Participantes. Representantes de la academia de sistemas y computación de los Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Física I Ingeniería en Sistemas Computacionales SCM - 0409 3-2-8 2.- HISTORIA DEL

Más detalles

Cinemática del sólido rígido, ejercicios comentados

Cinemática del sólido rígido, ejercicios comentados Ejercicio 10, pag.1 Planteamiento La barra CDE gira con una velocidad angular y acelera con, si la deslizadera desciende verticalmente a una velocidad constante de 0,72m/s. Se pide: a) velocidades y aceleraciones

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 014 Problemas (Dos puntos por problema). Problema 1 (Primer parcial): Un cuerpo de masa 10 g se desliza bajando por un plano inclinado

Más detalles

NÚCLEO DE BOLÍVAR CÓDIGO: Horas Teóricas Horas para Evaluaciones Horas Perdidas Horas Efectivas

NÚCLEO DE BOLÍVAR CÓDIGO: Horas Teóricas Horas para Evaluaciones Horas Perdidas Horas Efectivas UNIVERSIDAD DE ORIENTE ASIGNATURA: Física I NÚCLEO DE BOLÍVAR CÓDIGO: 005-1814 UNIDAD DE ESTUDIOS BÁSICOS PREREQUISITO: Ninguno ÁREA DE FÍSICA HORAS SEMANALES: 6 horas OBJETIVOS GENERALES: Al finalizar

Más detalles

MATEMÁTICAS 1º BACH. C. N. Y S. 25 de enero de 2010 Geometría y Logaritmos

MATEMÁTICAS 1º BACH. C. N. Y S. 25 de enero de 2010 Geometría y Logaritmos MATEMÁTICAS 1º BACH. C. N. Y S. 5 de enero de 010 Geometría y Logaritmos x yz 1) Tomar logaritmos, y desarrollar, en la siguiente expresión: A 4 ab log x log b 4log a log y ) Quitar logaritmos: log A )

Más detalles

Cinemática: parte de la Física que estudia el movimiento de los cuerpos.

Cinemática: parte de la Física que estudia el movimiento de los cuerpos. CINEMÁTICA Cinemática: parte de la Física que estudia el movimiento de los cuerpos. Movimiento: cambio de posición de un cuerpo respecto de un punto de referencia que se supone fijo. Objetivo del estudio

Más detalles

1. Cinemática: Elementos del movimiento

1. Cinemática: Elementos del movimiento 1. Cinemática: Elementos del movimiento 1. Una partícula con velocidad cero, puede tener aceleración distinta de cero? Y si su aceleración es cero, puede cambiar el módulo de la velocidad? 2. La ecuación

Más detalles

CENTRO DE GRAVEDAD Y CENTROIDE. Considerando el sistema de n partículas fijo dentro de una región del espacio,

CENTRO DE GRAVEDAD Y CENTROIDE. Considerando el sistema de n partículas fijo dentro de una región del espacio, CENTRO DE GRAVEDAD Y CENTROIDE Centro de gravedad y centro de masa para un sistema de partículas Centro de gravedad Considerando el sistema de n partículas fijo dentro de una región del espacio, Los pesos

Más detalles

El estudio del movimiento de los cuerpos generalmente se divide en dos fases, por conveniencia: la cinemática y la dinámica.

El estudio del movimiento de los cuerpos generalmente se divide en dos fases, por conveniencia: la cinemática y la dinámica. Tema 1: Cinemática. Introducción. Describir el movimiento de objetos es una cuestión fundamental en la mecánica. Para describir el movimiento es necesario recurrir a una base de conceptos o ideas, sobre

Más detalles

FUERZAS CENTRALES. Física 2º Bachillerato

FUERZAS CENTRALES. Física 2º Bachillerato FUERZAS CENTRALES 1. Fuerza central. Momento de una fuerza respecto de un punto. Momento de un fuerza central 3. Momento angular de una partícula 4. Relación entre momento angular y el momento de torsión

Más detalles

Formatos para prácticas de laboratorio

Formatos para prácticas de laboratorio CARRERA PLAN DE ESTUDIO CLAVE ASIGNATURA NOMBRE DE LA ASIGNATURA TRONCO COMÚN 2005-2 4348 DINÁMICA PRÁCTICA NO. DIN-09 LABORATORIO DE NOMBRE DE LA PRÁCTICA LABORATORIO DE CIENCIAS BÁSICAS PÉNDULO SIMPLE

Más detalles

IX. Análisis dinámico de fuerzas

IX. Análisis dinámico de fuerzas Objetivos: IX. Análisis dinámico de fuerzas 1. Comprender la diferencia entre masa y peso. 2. Comprender como calcular el momento de masa de inercia de un objeto. 3. Recordar el teorema de ejes paralelos.

Más detalles

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS

CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 4.- ESTATICA. 3.1.- Centro de gravedad de un cuerpo. Un cuerpo de masa M, se puede considerar compuesto por multitud de partículas

Más detalles

CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS

CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS Un volante cuyo diámetro es de 3 m está girando a 120 r.p.m. Calcular: a) su frecuencia, b) el periodo, c) la velocidad angular, d) la velocidad

Más detalles

2015, Año del Generalísimo José María Morelos y Pavón

2015, Año del Generalísimo José María Morelos y Pavón Nombre de la Asignatura: ROBOTICA Línea de Investigación o Trabajo: PROCESAMIENTO DE SEÑALES ELECTRICAS Y ELECTRONICAS Tiempo de dedicación del estudiante a las actividades de: DOC-TIS-TPS-CRÉDITOS 48

Más detalles

ERF SATCA 1 : Carrera:

ERF SATCA 1 : Carrera: 1. Datos Generales de la asignatura Nombre de la asignatura: Clave de la asignatura: SATCA 1 : Carrera: Estática y Dinámica ERF-1011 3-2-5 Ingeniería en Energías Renovables 2. Presentación Caracterización

Más detalles

Dr. Juan Rafael Mestizo Cerón, Mtro. Héctor García Cuevas, Ing. Rodolfo Solórzano Hernández, Ing. Augusto Fernández Ramírez

Dr. Juan Rafael Mestizo Cerón, Mtro. Héctor García Cuevas, Ing. Rodolfo Solórzano Hernández, Ing. Augusto Fernández Ramírez 1.-Área académica Técnica 2.-Programa educativo Ingeniería Mecánica Eléctrica 3.-Dependencia académica Facultad de Ingeniería Mecánica Eléctrica Xalapa, Veracruz, Poza Rica, Cd. Mendoza y Coatzacoalcos

Más detalles

. Universidad Tecnológica Nacional - Facultad Regional Rosario. Álgebra y Geometría Analítica EL PLANO

. Universidad Tecnológica Nacional - Facultad Regional Rosario. Álgebra y Geometría Analítica EL PLANO . Universidad Tecnológica Nacional - Facultad Regional Rosario Álgebra y Geometría Analítica EL PLANO Autores: Lic. Martha Fascella Ing. Ricardo F. Sagristá 0 Contenido EL PLANO... 3.- Definición del plano

Más detalles

Parámetros cinéticos de un sistema pistón-biela-cigüeñal

Parámetros cinéticos de un sistema pistón-biela-cigüeñal Parámetros cinéticos de un sistema pistón-biela-cigüeñal 3-1-1 Revisado 04-07-13 En el esquema anexo vemos los componentes característicos de un compresor, que es semejante a un motor alternativo de combustión

Más detalles

Resumen de Física. Cinemática. Juan C. Moreno-Marín, Antonio Hernandez Escuela Politécnica - Universidad de Alicante

Resumen de Física. Cinemática. Juan C. Moreno-Marín, Antonio Hernandez Escuela Politécnica - Universidad de Alicante Resumen de Física Cinemática, Antonio Hernandez D.F.I.S.T.S. La Mecánica se ocupa de las relaciones entre los movimientos de los sistemas materiales y las causas que los producen. Se divide en tres partes:

Más detalles

Función de dos variables

Función de dos variables Funciones de dos y más variables, dominio y rango, y curva de nivel Marlon Fajardo Molinares - fenix.75@hotmail.com 1. Función de dos variables 2. Funciones de varias variables 3. Método para hallar el

Más detalles

Carrera : Ingeniería Civil SATCA

Carrera : Ingeniería Civil SATCA 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura : Dinámica Carrera : Ingeniería Civil Clave de la asignatura : ICF-1009 SATCA 1 3-2-5 2.- PRESENTACIÓN Caracterización de la asignatura. Esta asignatura

Más detalles

Pontificia Universidad Católica del Ecuador

Pontificia Universidad Católica del Ecuador 1. DATOS INFORMATIVOS: MATERIA O MÓDULO: Física General CÓDIGO: 12040 CARRERA: NIVEL: Civil Preparatorio No. CRÉDITOS: 6 CRÉDITOS TEORÍA: 6 CRÉDITOS PRÁCTICA: SEMESTRE / AÑO ACADÉMICO: Segundo Semestre

Más detalles

TEMA 6 ESTÁTICA. Bibliografía recomendada:

TEMA 6 ESTÁTICA. Bibliografía recomendada: TEMA 6 ESTÁTICA 0 > Introducción. 1 > Equilibrio. Tipos de equilibrio. 2 > Principios fundamentales y ecuaciones cardinales de la Estática. 3 > Estática de sistemas planos. 3.1 > Reacciones en apoyos y

Más detalles

Facultad de Ingeniería Civil

Facultad de Ingeniería Civil Facultad de Ingeniería Civil SÍLABO ASIGNATURA : FÍSICA I CÓDIGO: 3A0039 I. DATOS GENERALES 1.1. Escuela Profesional : Ingeniería Civil 1.2. Departamento Académico : Ingeniería Civil 1.2 Semestre Académico

Más detalles

Mecánica del Cuerpo Rígido

Mecánica del Cuerpo Rígido Mecánica del Cuerpo Rígido Órdenes de Magnitud Cinemática de la Rotación en Contexto 7.1 Estime la frecuencia de giro a potencia máxima de un ventilador de techo y su correspondiente velocidad angular.

Más detalles

Mecánica para Ingenieros: Cinemática. 1. La Mecánica como ciencia

Mecánica para Ingenieros: Cinemática. 1. La Mecánica como ciencia Mecánica para Ingenieros: Cinemática 1. La Mecánica como ciencia La Mecánica como ciencia 1. Objeto de la Mecánica 2. Magnitudes físicas y unidades 3. Idealizaciones 4. Leyes de Newton 5. Partes de la

Más detalles

CINEMÁTICA: se encarga del estudio de los movimientos de los cuerpos sin atender a las causas que lo originan.

CINEMÁTICA: se encarga del estudio de los movimientos de los cuerpos sin atender a las causas que lo originan. 1. CINEMÁTICA. CONCEPTO. CINEMÁTICA: se encarga del estudio de los movimientos de los cuerpos sin atender a las causas que lo originan. 2. MOVIMIENTO. 2.1. CONCEPTO Es el cambio de lugar o de posición

Más detalles

Ministerio de Educación de la Provincia de San Luis Programa de Educación Superior Instituto de Formación Docente Continua - Villa Mercedes

Ministerio de Educación de la Provincia de San Luis Programa de Educación Superior Instituto de Formación Docente Continua - Villa Mercedes OFERTA ACADÉMICA MATERIA CARRERA AÑO PERÍODO Tecnicatura Superior en Tecnologías FÍSICA Industriales Profesorado en Educación Tecnológica 2012 1º Cuatrimestre DOCENTE DOCENTE FUNCIÓN DEDICACIÓN Ing. Miguel

Más detalles

Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones.

Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones. Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones. Movimiento de rotación. Cuerpos rígidos un cuerpo con una forma definida, que no cambia en forma que las partículas que lo componen permanecen

Más detalles

MAGNITUDES. INTRODUCCIÓN AL ANÁLISIS DIMENSIONAL

MAGNITUDES. INTRODUCCIÓN AL ANÁLISIS DIMENSIONAL MGNITUDES. INTRODUCCIÓN L NÁLISIS DIMENSIONL IES La Magdalena. vilés. sturias Magnitud es todo aquello que puede ser medido. Por eemplo una longitud, la temperatura, la intensidad de corriente, la fuerza

Más detalles

Física I. Carrera: INM Participantes Representante de las academias de ingeniería industrial de Institutos Tecnológicos.

Física I. Carrera: INM Participantes Representante de las academias de ingeniería industrial de Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Física I Ingeniería Industrial INM - 0401 3 2 8 2.- HISTORIA DEL PROGRAMA Lugar

Más detalles

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas.

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. 1.- Determine la velocidad con que se propagación de una onda a través de una cuerda sometida ala tensión F, como muestra la figura. Para ello considere

Más detalles

GUIA Nº5: Cuerpo Rígido

GUIA Nº5: Cuerpo Rígido GUIA Nº5: Cuerpo Rígido Problema 1. La figura muestra una placa que para el instante representado se mueve de manera que la aceleración del punto C es de 5 cm/seg2 respecto de un sistema de referencia

Más detalles

Chapter 1. Fuerzas. Por ejemplo: Si empujas una nevera, al empujarla se ejerce una fuerza. Esta fuerza se representa así:

Chapter 1. Fuerzas. Por ejemplo: Si empujas una nevera, al empujarla se ejerce una fuerza. Esta fuerza se representa así: Chapter 1 Fuerzas En Estática es muy usual tener un cuerpo u objeto que tiene varias fuerzas aplicadas. Es por esto que solucionar un problema de estática en pocas palabras quiere decir calcular cuánto

Más detalles

EL GIRÓSCOPO. Determinación experimental del momento de inercia del giróscopo y de la velocidad angular de precesión.

EL GIRÓSCOPO. Determinación experimental del momento de inercia del giróscopo y de la velocidad angular de precesión. EL GIRÓSCOPO 1. OBJETIVOS Determinación experimental del momento de inercia del giróscopo y de la velocidad angular de precesión. 2. FUNDAMENTO TEÓRICO. Un giróscopo es un disco en rotación construido

Más detalles

I. INTRODUCCIÓN MECANICA MECANICA DE CUERPO RIGIDOS MECÁNICA DE CUERPO DEFORMABLE MECÁNICA DE FLUIDOS

I. INTRODUCCIÓN MECANICA MECANICA DE CUERPO RIGIDOS MECÁNICA DE CUERPO DEFORMABLE MECÁNICA DE FLUIDOS I. INTRODUCCIÓN MECANICA MECANICA DE CUERPO RIGIDOS MECÁNICA DE CUERPO DEFORMABLE MECÁNICA DE FLUIDOS ESTATICA DINAMICA CINEMATICA CINETICA II. NOCION DE CINEMATICA La cinemática (del griegoκινεω, kineo,

Más detalles

Guía de Problemas. CINEMÁTICA de la MARCHA. Introducción

Guía de Problemas. CINEMÁTICA de la MARCHA. Introducción Guía de Problemas CINEMÁICA de la MARCHA Introducción La Cinemática es una rama de la Mecánica que estudia el movimiento sin tomar en cuenta las fuerzas que lo originan. Para la descripción cinemática

Más detalles

Contenido. Omar De la Peña-Seaman IFUAP Mecánica Clásica M.C. Física 1/19 19

Contenido. Omar De la Peña-Seaman IFUAP Mecánica Clásica M.C. Física 1/19 19 Contenido 1. Cuerpo rígido II: ecuaciones de movimiento 1.1 Movimiento compuesto: traslación + rotación 1.2 Tensor de inercia y momento de inercia 1.3 Ejes principales y momentos principales de inercia

Más detalles

Volumen de Sólidos de Revolución

Volumen de Sólidos de Revolución 60 CAPÍTULO 4 Volumen de Sólidos de Revolución 6 Volumen de sólidos de revolución Cuando una región del plano de coordenadas gira alrededor de una recta l, se genera un cuerpo geométrico denominado sólido

Más detalles

Péndulo de torsión y momentos de inercia

Péndulo de torsión y momentos de inercia Prácticas de Física Péndulo de torsión y momentos de inercia 1 Objetivos Curso 2009/10 Determinar la constante de un muelle espiral Determinar el momento de inercia de varios sólidos rígidos Comprobar

Más detalles

ESTÁTICA 3 3 VECTORES

ESTÁTICA 3 3 VECTORES ESTÁTICA Sesión 3 3 VECTORES 3.1. Componentes en dos dimensiones 3.1.1. Operación con vectores por sus componentes 3.1.2. Vectores de posición por sus componentes 3.2. Componentes en tres dimensiones 3.2.1.

Más detalles

VECTORES. también con letras sobre las cuales se coloca una flechita ( a ). A = módulo de A. modulo o magnitud, dirección y sentido. vector.

VECTORES. también con letras sobre las cuales se coloca una flechita ( a ). A = módulo de A. modulo o magnitud, dirección y sentido. vector. VECTORES Según su naturaleza las cantidades físicas se clasifican en magnitudes escalares y magnitudes vectoriales Las magnitudes como el tiempo, la temperatura, la masa y otras, son magnitudes escalares

Más detalles

MÓDULO 8: VECTORES. Física

MÓDULO 8: VECTORES. Física MÓDULO 8: VECTORES Física Magnitud vectorial. Elementos. Producto de un vector por un escalar. Operaciones vectoriales. Vector unitario. Suma de vectores por el método de componentes rectangulares. UTN

Más detalles

y cualquier par (x, y) puede escalarse, multiplicarse por un número real s, para obtener otro vector (sx, sy).

y cualquier par (x, y) puede escalarse, multiplicarse por un número real s, para obtener otro vector (sx, sy). UNIDAD II: VECTORES EN DOS Y TRES DIMENSIONES Un espacio vectorial (o espacio lineal) es el objeto básico de estudio en la rama de la matemática llamada álgebra lineal. A los elementos de los espacios

Más detalles

GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π

GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π GEOMETRÍA 1.- Se considera la recta r : ( x, y, z) = ( t + 1, t,3 t), el plano π: x y z = 0y el punto P (1,1,1). Se pide: a) Determinar la ecuación del plano π 1 que pasa por el punto P y es paralelo a

Más detalles

Capítulo 1 Vectores. 26 Problemas de selección - página 13 (soluciones en la página 99)

Capítulo 1 Vectores. 26 Problemas de selección - página 13 (soluciones en la página 99) Capítulo 1 Vectores 26 Problemas de selección - página 13 (soluciones en la página 99) 21 Problemas de desarrollo - página 22 (soluciones en la página 100) 11 1.A PROBLEMAS DE SELECCIÓN Sección 1.A Problemas

Más detalles

Mecánica Racional 20 TEMA 2: Cinética de Partículas. Leyes de Newton.

Mecánica Racional 20 TEMA 2: Cinética de Partículas. Leyes de Newton. 1. Introducción. 2. Leyes de Newton: 2.1 Primera Ley de Newton o Ley de Inercia. 2.2 Segunda Ley de Newton o Principio Fundamental de la Dinámica. 2.3 Tercera Ley de Newton o Principio de Acción o Reacción.

Más detalles

MECÁNICA II CURSO 2004/05

MECÁNICA II CURSO 2004/05 1.1.- Movimientos de un sólido rígido. (rotación alrededor de ejes fijos) 1.1.1 El conjunto representado se compone de dos varillas y una placa rectangular BCDE soldadas entre sí. El conjunto gira alrededor

Más detalles

Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica.

Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica. æ Mecánica CLásica Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica. Problema 1: Dos barras delgadas uniformes de longitudes iguales, l=0.5 m, una de 4 kg y la

Más detalles

UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA

UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA NOMBRE... APELLIDOS... CALLE... POBLACIÓN... PROVINCIA... C. P.... SISTEMAS MECÁNICOS E.T.S. de Ingenieros Industriales PRUEBA DE EVALUACIÓN A DISTANCIA /

Más detalles

5º Tema.- Ampliación de análisis cinemático de mecanismos planos mediante métodos analíticos.

5º Tema.- Ampliación de análisis cinemático de mecanismos planos mediante métodos analíticos. Universidad de Huelva ESCUELA POLITECNICA SUPERIOR Departamento de Ingeniería Minera, Mecánica y Energética Asignatura: Ingeniería de Máquinas [570004027] 5º curso de Ingenieros Industriales 5º Tema.-

Más detalles

MATEMÁTICASII Curso académico BLOQUE GEOMETRÍA. TEMA 1: VECTORES

MATEMÁTICASII Curso académico BLOQUE GEOMETRÍA. TEMA 1: VECTORES MATEMÁTICASII Curso académico 2015-2016 BLOQUE GEOMETRÍA. TEMA 1: VECTORES 1.1 VECTORES DEL ESPACIO. VECTORES LIBRES DEL ESPACIO Sean y dos puntos del espacio. Llamaremos vector (fijo) a un segmento orientado

Más detalles

7. PÉNDULO DE TORSIÓN

7. PÉNDULO DE TORSIÓN 7. PÉNDULO DE TORSÓN OBJETVO El objetivo de la práctica es comprobar la dependencia del momento de inercia de un objeto respecto a la distancia al centro de rotación y realizar la medición del momento

Más detalles

CÁTEDRA DE FÍSICA I ONDAS MECÁNICAS - PROBLEMAS RESUELTOS

CÁTEDRA DE FÍSICA I ONDAS MECÁNICAS - PROBLEMAS RESUELTOS CÁTEDRA DE FÍSICA I Ing. Civil, Ing. Electromecánica, Ing. Eléctrica, Ing. Mecánica PROBLEMA Nº 2 La ecuación de una onda armónica transversal que avanza por una cuerda es: y = [6 sen (0,01x + 1,8t)]cm.

Más detalles

UNIVERSIDAD NACIONAL DE SAN CRISTÓBAL DE HUAMANGA FACULTAD DE INGENIERIA DE MINAS, GEOLOGÍA Y CIVIL

UNIVERSIDAD NACIONAL DE SAN CRISTÓBAL DE HUAMANGA FACULTAD DE INGENIERIA DE MINAS, GEOLOGÍA Y CIVIL UNIVERSIDAD NACIONAL DE SAN CRISTÓBAL DE HUAMANGA FACULTAD DE INGENIERIA DE MINAS, GEOLOGÍA Y CIVIL ESCUELA DE FORMACION PROFESIONAL DE INGENIERIA CIVIL DO TRABAJO SEMESTRAL SOLUCION DE EJERCICIOS PROPUESTOS

Más detalles

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO 1. Una onda transversal se propaga en una cuerda según la ecuación (unidades en el S.I.) Calcular la velocidad de propagación de la onda y el estado de vibración

Más detalles

GUIA DIDÁCTICA DE LA ASIGNATURA FÍSICA DEL MOVIMIENTO

GUIA DIDÁCTICA DE LA ASIGNATURA FÍSICA DEL MOVIMIENTO PROGRAMA ACADÉMICO ASIGNATURA: CODIGO DE ASIGNATURA CBS00079 CBS00080 GRUPO: FECHA DE INICIO: CBS00080 CBS00115 CBS00022 PROFESOR: e- mail: OBJETIVOS DE LA ASIGNATURA Y COMPETENCIAS QUE DESARROLLA El proceso

Más detalles

Unidad 5: Geometría Analítica

Unidad 5: Geometría Analítica Unidad 5 Geometría Analítica 5. Ecuaciones de una recta Los planos y las rectas son objetos geométricos que se pueden representar mediante ecuaciones. Encontraremos la ecuación vectorial de una recta r

Más detalles

SEMANA 06: CIRCUNFERENCIA

SEMANA 06: CIRCUNFERENCIA 1 SEMANA 06: ECUACION DE LA : 1. Canónica ² + y² = r², su centro es C (0, 0). Ordinaria ( h)² + (y-k)² = r², su centro es C (h, k) 3. General ² + y² + D +Ey + F= 0 Su centro es C = (-, ). Su radio es r=

Más detalles

PROGRAMA INSTRUCCIONAL

PROGRAMA INSTRUCCIONAL UNIVERSIDAD FERMIN TORO VICE-RECTORADO ACADEMICO FACULTAD DE INGENIERIA ESCUELA DE COMPUTACION ESCUELA DE ELÉCTRICA ESCUELA DE TELECOMUNICACIONES PROGRAMA AL FUNDAMENTOS DE RESISTENCIA DE LOS MATERIALES

Más detalles

El momento tiende a provocar una aceleración angular (cambio en la velocidad de giro) en el cuerpo sobre el cual se aplica (puerta, molinete, etc.).

El momento tiende a provocar una aceleración angular (cambio en la velocidad de giro) en el cuerpo sobre el cual se aplica (puerta, molinete, etc.). 1 ESTATICA MOMENTO DE UNA FUERZA Dada una fuerza F situada a una distancia d de un punto o, se denomina (definición matemática) momento de la fuerza con respecto a un punto o, al producto de la intensidad

Más detalles

A = A < θ R = A + B + C = C+ B + A. b) RESTA O DIFERENCIA DE VECTORES ANÁLISIS VECTORIAL. Es una operación que tiene por finalidad hallar un

A = A < θ R = A + B + C = C+ B + A. b) RESTA O DIFERENCIA DE VECTORES ANÁLISIS VECTORIAL. Es una operación que tiene por finalidad hallar un ANÁLISIS VECTORIAL MAGNITUD FÍSICA Es todo aquello que se puede medir. CLASIFICACIÓN DE MAGNITUDES POR NATURALEZA MAGNITUD ESCALAR: Magnitud definida por completo mediante un número y la unidad de medida

Más detalles

Carrera: Ingeniería Química. Asignatura: Cálculo Multivariable. Área del Conocimiento: Ciencias Basicas

Carrera: Ingeniería Química. Asignatura: Cálculo Multivariable. Área del Conocimiento: Ciencias Basicas Carrera: Ingeniería Química Asignatura: Cálculo Multivariable Área del Conocimiento: Ciencias Basicas Generales de la Asignatura: Nombre de la Asignatura: Clave Asignatura: Nivel: Carrera: Frecuencia (h/semana):

Más detalles

Álgebra y Geometría Analítica I - LF 2016 Práctica 1: Algunos elementos de la Geometría Analítica

Álgebra y Geometría Analítica I - LF 2016 Práctica 1: Algunos elementos de la Geometría Analítica Álgebra y Geometría Analítica I - LF 2016 Práctica 1: Algunos elementos de la Geometría Analítica 1. a) Marcar en un eje los puntos a(1);b( 2) y c(4). b) Hallar los puntos simétricos respecto al origen

Más detalles